
Journal of Systems Architecture 52 (2006) 627–639

www.elsevier.com/locate/sysarc
FMESP: Framework for the modeling and evaluation
of software processes

Félix Garcı́a a,*, Mario Piattini a, Francisco Ruiz a, Gerardo Canfora b,
Corrado A. Visaggio b

a Alarcos Research Group, Computer Science Department, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
b RCOST – Research Centre on Software Technology, University of Sannio, Benevento, Italy

Available online 7 August 2006
Abstract

Nowadays, organizations face with a very high competitiveness and for this reason they have to continuously improve
their processes. Two key aspects to be considered in the software processes management in order to promote their improve-
ment are their effective modeling and evaluation. The integrated management of these key aspects is not a trivial task, the
huge number and diversity of elements to take into account makes it complex the management of software processes. To
ease and effectively support this management, in this paper we propose FMESP: a framework for the integrated manage-
ment of the modeling and measurement of software processes. FMESP incorporates the conceptual and technological ele-
ments necessary to ease the integrated management of the definition and evaluation of software processes. From the
measurement perspective of the framework and in order to provide the support for the software process measurement
at model level a set of representative measures have been defined and validated.
� 2006 Elsevier B.V. All rights reserved.

Keywords: Software process modeling; Software measurement; Conceptual framework; Software engineering environment
1. Introduction

The successful management of software processes
is one of the main goals for software organizations
in order to improve products quality, given the exis-
tent correlation between process and product qual-
ity [10]. To satisfy the quality requirements entails
that: software processes must produce the expected
results, be correctly defined, and any improvements
made should be in accordance with the objectives of
1383-7621/$ - see front matter � 2006 Elsevier B.V. All rights reserved

doi:10.1016/j.sysarc.2006.06.007

* Corresponding author. Tel.: +34 926 295300; fax: +34 926
295354.

E-mail address: Felix.Garcia@uclm.es (F. Garcı́a).
the enterprise, which may change very often in
highly competitive companies. ‘‘Software Process
Management’’ [9] involves four key responsibilities:
to define, measure, control and improve the process.
In order to take these responsibilities into account,
it is very important to consider the integrated man-
agement of two key aspects:

• Process modeling. Given the particular complex-
ity of software processes, deriving from the high
diversity of elements which have to be considered
when managing them, it is necessary to effectively
carry out the definition of the software processes.
The process models constitute the starting point
.

mailto:Felix.Garcia@uclm.es


628 F. Garcı́a et al. / Journal of Systems Architecture 52 (2006) 627–639
to analyze, enact and improve the processes.
Against the diversity of existing process modeling
proposals, a reference process metamodel
becomes necessary. With this goal, the Object
Management Group (OMG) has proposed the
SPEM (Software Process Engineering Meta-
model Specification) metamodel [20], which
defines a reference language for process
modeling.

• Process evaluation. In order to promote software
process improvement, it is very important to pre-
viously establish a framework for analysis (with
the aim of determining the strong and weak
points of the software processes). The previous
step of the software processes improvement is
their evaluation and this goal requires the defini-
tion of measures related to the different elements
involved in software processes. Due to the great
number of different entities involved in the evalu-
ation of software processes, the establishment of
a common terminology for the definition, calcu-
lation and exploitation of measures is fundamen-
tal for the integrated and effective management
of the measurement process. The integration of
the modeling and evaluation of software pro-
cesses can be beneficial for a Software Organiza-
tion for different reasons:
– it is a critical factor to reach a high degree of

maturity in its processes with accordance to
the maturity models;

– by using the same notations and reference
models for modeling and evaluation, misun-
derstanding could be more easily avoided;

– the integration could let the adoption of one
software tool for both modeling and evaluat-
ing: this reduces the costs, in terms of licenses,
time for training the people who will have to
use it.
In this article we propose FMESP: a framework
for the integrated management of the modeling
and measurement of software processes in order to
promote their improvement. FMESP includes the
conceptual and technological elements necessary to
ease the integrated management of the definition
and evaluation of software processes. From the
measurement perspective, FMESP provides a sys-
tematic and integrated way to effectively measure
the basic kinds of entity candidate for the measure-
ment in the context of the software processes: pro-
cess models, projects and products. The existing
research efforts on software process measurement
have been mainly focused on the measurement of
projects – in terms of cost and schedule –, products
and concrete aspects of models as accuracy [7],
intended as the degree to which the model reflects
the actual process. To complement the process
measurement support, we have proposed a set of
measures to evaluate the maintainability of SPMs
as part of FMESP. They may provide the quantita-
tive basis for easing the changes and evolution of
the models in the context of software process
improvement.

The rest of the paper proceeds as follows. Firstly,
we present the characteristics of the FMESP frame-
work by describing its main components: a con-
ceptual framework and a software engineering
environment (SEE). In Section 3 the measures for
the evaluation of SPMs are described. In Section
3.1 the definition of the measures is presented. Then,
the results obtained with the empirical validation of
the measures are shown. Finally, some conclusions
and further works are outlined.

2. FMESP overview

The main components of FMESP are a con-

ceptual framework and a software engineering

environment.

2.1. Conceptual framework

The FMESP Conceptual Framework provides
the support necessary for the representation and
management of the knowledge related with the soft-
ware processes from the modeling and measurement
perspectives. FMESP represents the necessary mean
to define and measure the software processes in an
integrated way, by tackling their intrinsic complex-
ity to support these key aspects in the process man-
agement. In Fig. 1 the structure and main elements
of the conceptual framework are shown.

As we can observe in Fig. 1, the conceptual
framework of FMESP is composed of

(a) A conceptual metadata architecture of four
Abstraction layers. The aim of this architecture is
to provide the integration management of the mod-
eling and measurement by representing the elements
related in different abstraction layers. This integra-
tion is carried out by including the modeling lan-
guages (metamodels) necessary to define the
processes, the measurement models of the process
entities and the required metamodels (domain meta-
models) to represent any software process-related



Fig. 1. FMESP: conceptual framework.

F. Garcı́a et al. / Journal of Systems Architecture 52 (2006) 627–639 629
entity (process models, projects, products) which
can be candidate for measurement. In this architec-
ture also the concrete models for the definition and
measurement of software processes (level M1) are
included.

(b) A collection of ontologies. A fundamental
aspect to consider in order to successfully integrate
the modeling and measurement of software pro-
cesses is that all the models and metamodels neces-
sary must be based on the same conceptualization
(set of objects, concepts, entities and their relation-
ships which are supposed to exist in these domains
of interest) and such conceptualization must be
specified by building the suitable ontologies [15].
With this aim in mind and as a previous step to
the metamodel definition we developed the follow-
ing ontologies by applying the REFSENO method-
ology [21]:
• Descriptive software process modeling ontology.
This ontology has been defined to clarify the
domain of descriptive modeling of software pro-
cesses and the SPEM specification [20] has been
used as reference.

• Software measurement ontology (SMO) [13]. At
the best knowledge of the authors, there is a need
to establish and clarify the terminology; the relevant
concepts and relations in the field of the software
measurement. By this ontology the software mea-
surement domain is clarified and it has eased the later
definition of the measurement metamodel in order to
carry out a systematic an effective measurement pro-
cess given the inherent complexity of the software
process measurement. Also, by this ontology a com-
mon measurement terminology can be provided in
companies to ease the communication and
understanding among the staff responsible of the



630 F. Garcı́a et al. / Journal of Systems Architecture 52 (2006) 627–639
measurement process and provide the possibility to
register the results of this process in a consistent an
integrated way. The current version of this ontology
is shown in Fig. 2 with an UML class diagram. The
SMO ontology is subdivided in four sub-ontologies:

(i) Software measurement characterization and

objectives, which includes the concepts required to
establish the scope and objectives of the software
measurement process. The main goal of a software
Fig. 2. FMESP: software m
measurement process is to satisfy certain informa-
tion needs by identifying the entities (which belong
to entity classes) and the attributes of these entities
(which are the focus of the measurement process).
Attributes and information needs are related
through measurable concepts (which belong to a
quality model).

(ii) Software measures, which aims at establishing
and clarifying the key elements in the definition of a
easurement ontology.



F. Garcı́a et al. / Journal of Systems Architecture 52 (2006) 627–639 631
software measure. A measure relates a defined mea-
surement approach and a measurement scale (which
belongs to a type of scale). A measure is expressed in
a unit of measurement, and can be defined for more
than one attribute. Three kinds of measures are dis-
tinguished: base measures, derived measures, and
indicators.

(iii) Measurement approaches, which introduces
the concept of measurement approach to generalize
the different ‘‘approaches’’ used by the three kinds
of measures for obtaining their respective measure-
ment results. A base measure applies a measurement
method. A derived measure uses a measurement
function (which rests upon other base and/or
derived measures). Finally, an indicator uses an
analysis model (based on a decision criteria) to
obtain a measurement result that satisfies an infor-
mation need.

(iv) Measurement. It establishes the terminology
related with the act of measuring software. A mea-
surement (which is an action) is a set of operations
having the object of determining the value of a mea-
surement result, for a given attribute of an entity,
using a measurement approach. Measurement
results are obtained as the result of performing mea-
surements (actions).

(c) A collection of Metamodels. The knowledge
related with the software process modeling and
measurement domains were represented with the
ontologies, the aim to automate the conceptual
framework. It was enriched with the following
metamodels:

• A process modeling language (PML). The lan-
guage selected has been SPEM (Software Process
Engineering Metamodel Specification). This is the
process modeling metamodel more suitable for the
FMESP framework which requires a generic meta-
model with the constructors adequate for the
descriptive definition of the software processes.
SPEM has a wide industrial acceptance and since
it is based on UML (Unified Modeling Language)
it is expected to be used largely as well as the
UML in the product modeling.

• Software measurement metamodel. In order to
provide the quantitative support necessary for the
process improvement, the measurement models
must be represented by using a consistent meta-
model. For this reason we have defined a measure-
ment metamodel based on the software
measurement ontology. With this metamodel the
measurement process is effectively supported by
providing a homogeneous and consistent represen-
tation of the huge diversity of entities which can
be measured in the context of the software process
evaluation (project measurement, quality of the
work-products, quality of the process models, etc.).

• Metamodels for the definition of the software-

process related entities. In order to provide the sup-
port necessary for the measurement of the software
process it is necessary to represent and measure the
relevant entities related with the process of interest.
In order to achieve this, the metamodels which rep-
resent these entities must be defined and included in
the repository. Hence, the measurement models can
be defined and this definition is performed relying
on the metamodels constructors by defining a set
of base measures (for example, the number of enti-
ties in an entity-relationship model) and then a set
of derived measures and indicators (maintainability
rate of an entity relationship model). These meta-
models are called ‘‘Domain Metamodels’’.

2.2. Software engineering environment

The FMESP SEE is composed of two integrated
tools which provide the technological support to the
conceptual framework: METAMOD for the defini-
tion and management of the metadata conceptual
architecture; and GenMETRIC to support the
development of measurement models. The SEE
can be extended with new tools for the support of
the evaluation and improvement of the processes.
All the metadata managed by the tools are stored
in a repository which permits the sharing of all the
overall software process information and knowl-
edge. In Fig. 3 a general overview of the SEE is
shown.

As we can observe in Fig. 3, the three main ele-
ments which constitute the SEE are

(a) A metadata repository. The metadata repre-
sentation at different abstraction levels is the most
suitable means to handle the complexity and diver-
sity of the information needed to support the defini-
tion and evaluation of the software processes. To
support this representation and storage one meta-
data repository is provided. The repository consti-
tutes the key component of the SEE and it
provides the tools with the metadata they need to
support the concrete aspects related to the definition
and measurement of software processes. Also, these
tools storage in the repository new metadata which
makes its growth possible. The models and meta-
models are stored in the repository as XMI docu-
ments [23].



Fig. 3. FMESP SEE.

Fig. 4. METAMOD tool.

632 F. Garcı́a et al. / Journal of Systems Architecture 52 (2006) 627–639



F. Garcı́a et al. / Journal of Systems Architecture 52 (2006) 627–639 633
(b) Software components for the management and
storage of metadata. To support the metadata defi-
nition and to store them in the repository according
to the MOF [16] and XMI standards, two software
components have been developed: MOFImplemen-

tation, which manages the representation of meta-
models and models according to the MOF
standard; and RepManager [19], to manage the
XMI representation and storage of the metadata
defined. The services of these components are used
by the SEE software tools to save and retrieve meta-
data of the repository.

(c) Software tools. The aim of the SEE software
tools is to provide the support for the definition of
the elements related to the software process – from
the proper software process model to any entity of
interest related with it – and the support for the
measurement of such elements. With this goal two
software prototypes have been developed:

• METAMOD [11] which supports the definition,
query and storage of the models and metamodels of
Fig. 5. Definition of software me
the repository. To achieve this it uses the services of
the components MOFImplementation and RepMan-

ager. With METAMOD, therefore, it is possible to
manage the software process knowledge base stored
in the repository. Fig. 4 shows the interface of
METAMOD for the definition of a metamodel by
using the MOF language.

• GenMETRIC [12], for the measurement of the
software entities. With GenMETRIC it is possible
the measurement of any software entity, for which
it is required to have stored in the repository the
domain metamodel which represents such entities.
Also it is possible the definition of any software
measure. The base measures are defined on the
domain metamodel elements (classes and associa-
tions) by using standard measurement methods as
‘‘count’’ or ‘‘graph length’’. For the definition of
derived measures and indicators the tool includes
an evaluator of arithmetical and logical expres-
sions. In Fig. 5 the frame for the definition of
base and derived measures is shown. Therefore,
asures with GenMETRIC.



634 F. Garcı́a et al. / Journal of Systems Architecture 52 (2006) 627–639
GenMETRIC is an open and extensible measure-
ment tool thanks to its usage of the metadata stored
in the repository (using the software components
services). The measurement models defined with
GenMETRIC are stored in the repository according
to the measurement metamodel of FMESP.

With the framework proposed the management
of the modeling and measurement of software pro-
cesses is supported by including a metadata reposi-
tory in which a knowledge base of the process
management is established orientated to its evalua-
tion and improvement.

3. Measures for software process models

The improvement of software processes involves
the need to effectively maintain them and the main-
tenance of the software process deserves the same
attention as well as any other kind of software [8].
Considering that ‘‘software processes are software
too’’ [17], the evaluation of the maintainability of
the processes in the early stages of their develop-
ment and specially, in the modeling stage, is very
important. SPMs constitute the starting point to
carry out the later enactment, evaluation and
improvement. Therefore, as the software processes
change, process models may change accordingly
and it is necessary to maintain effectively the process
Table 1
Measures of SPMs

Measure Definition

NA Number of Activities of the software process
NWP Number of Work Products of the software p
NPR Number of Roles which participate in the pr
NDWPIn Number of input dependences of the Work

NDWPOut Number of output dependences of the Work

NDWP Number of dependences between Work Prod

NDWP(PM) = NDWPIn(MP) + NDWPOut

NDA Number of precedence dependences between

NCA Activity Coupling in the process model
NCAðPMÞ ¼ NAðPMÞ

NDAðPMÞ

RDWPIn Ratio between input dependences of Work P
Work Products with Activities
RDWPInðPMÞ ¼ NDWPInðPMÞ

NDWPðPMÞ

RDWPOut Ratio between output dependences of Work
Work Products with Activities
RDWPOutðPMÞ ¼ NDWPOutðPMÞ

NDWPðPMÞ

RWPA Ratio of Work Products and Activities. Aver
RWPAðPMÞ ¼ NWPðPMÞ

NAðPMÞ

RRPA Ratio of Process Roles and Activities

RRPAðPMÞ ¼ NPRðPMÞ
NAðPMÞ
models with the aim to facilitate: the communica-
tion of process modifications, the understanding of
new responsibilities and procedures and the auto-
mation of guidance in performing new activities.
With this goal, in order to integrate (within the con-
text of the FMESP framework) the existing propos-
als in literature related with process measurement at
project and product levels with the process measure-
ment at conceptual level, a set of measures for soft-
ware process models were defined and empirically
validated to find useful SPMs maintainability
indicators.

A representative set of measures for software
process models has been defined in order to evaluate
the influence of the structural complexity of the
models on their maintainability (see Table 1).

The measures evaluate the software process
model structural complexity, and they could be use-
ful maintainability indicators, taking into account
that a software process model with high degree of
complexity will be much more difficult to maintain
by considering the relationship between structural
complexity and maintainability of software artifacts
[3] in the domain of software processes.

The measures have been defined following the
SPEM terminology [20] by examining its key soft-
ware process constructors, but they can be directly
applied to other PMLs. The defined measures are
model
rocess model
ocess

Products with the Activities in the process
Products with the Activities in the process

ucts and Activities

(MP)
Activities

roducts with Activities and total number of dependences of

Products with Activities and total number of dependences of

age of the work products and the activities of the process model



F. Garcı́a et al. / Journal of Systems Architecture 52 (2006) 627–639 635
Model Scope (see Table 1), because they measure
the structural complexity of the overall software
process model. The measures have been theoreti-
cally validated by using the DISTANCE framework
[18] and they belong to the ratio scale.

In Fig. 6 an exemplar software process model
represented with SPEM is shown, for which the
Activity Diagram UML notation and the stereo-
types which represent the SPEM constructors can
be used. The measures values are also shown.

3.1. Empirical validation

In order to empirically validate the proposed
measures and generalise the results in the best way
Fig. 6. Software process exam
possible, a family of experiments [4] has been car-
ried out. As Basili et al. [2] remark, by a family of
experiments it is possible to accumulate the knowl-
edge necessary to extract significant conclusions
that can be applied in practice. By carrying out an
empirical validation in the context of a family of
experiments it is possible to obtain better results
than if we carry out the empirical studies in an indi-
vidual way. With this objective we have planned
and performed a family of experiments according
to the methodology of Ciolkowski et al. [6]. The
general goal of the experiments is to demonstrate
the suitability of the selected measures of software
process models as maintainability indicators. By
using the Goal Question Metric (GQM) template
ple and measure values.



636 F. Garcı́a et al. / Journal of Systems Architecture 52 (2006) 627–639
[1] the general goal can be defined in the following
way:

• analyze measures of SPMs;
• with the purpose of evaluating;
• with respect to the capability of being used as

maintainability indicators;
• from the point of view of the researchers;
• in the context of computer science undergraduate

students and professionals of information
systems.

According to the general plan of the family we
have carried out five individual experiments
(Fig. 7) in order to satisfy the general goal.

As can be observed in Fig. 7, the individual
experiments were grouped under two main catego-
ries depending on the kind of tasks to perform by
the subjects:

• Subjective rating. In this group, the maintainabil-
ity sub-characteristics were rated in a subjective
way according to the opinion of the subjects.

• Objective rating. In the objective experiments the
subjects had to perform a set of tasks on the
models related with their maintainability (under-
standability and modifiability). In these experi-
ments the dependent variables were measured in
Fig. 7. Overview of the e
an objective way by calculating the time spent
by the subjects in performing these tasks.

The context of this group of experiments has
been composed of students and professionals. In
Table 2 are summarized the obtained results.

As a result of the empirical study, the measures
NA, NWP, NDWPIn, NDWPOut, NDWP and
NDA were demonstrated to be empirically valid
and hence, they can be used like SPMs maintain-
ability indicators. This significant group of mea-
sures has been correlated in all the experiments
with the dependent variables studied.

4. Conclusions and further works

In this paper the FMESP framework has been
presented. FMESP integrates the modeling and mea-
surement of software processes by providing the
conceptual and technological support necessary in
order to successfully manage these two key responsi-
bilities of the process management. The framework
was successfully applied in a software company
and some significant benefits were obtained [5].

From the measurement perspective of the frame-
work and in order to provide the support for the
software process measurement at conceptual level,
a set of representative SPM measures have been
xperiments family.



Table 2
Summary of the results of the experiments family

Experiments Subjects No. of
subjects

No. of
mod

Dependent variables Measurement of
dependent variables

Empirically validated measures

1st Professors,
researchers,
students

20 18 Understandability (U)
Analysability (A)
Modifiability (M)

Subjective rating of
subjects (U, A, M)

U, A, M: NA, NWP, NDWPIn,
NDWPOut, NDPT, NDA

Understandability
time (UT)

UT: NA, NWP, NDWPIn,
NDWPOut, NDPT, NDA

2nd (replica
of the 1st)

Professors,
researchers,
students

25 18 Understandability (U)
Analysability (A)
Modifiability (M)

Subjective rating of
subjects (U, A, M)

E, A, M: NA, NWP, NDWPIn,
NDWPOut, NDPT, NDA,
RRPA (only A)

Understandability
time (UT)

UT: NA, NWP, NDWPIn,
NDWPOut, NDPT

3rd Professionals 29 18 Understandability (U) Understandability
time (UT)

UT: NA, NWP, NDWPIn,
NDWPOut, NDPT, NDA

Modifiability (M) Modifiability
time (MT)

MT: –

4th Students 86 10 Understandability (U) Understandability
time (UT)

UT: NA, NWP, NDWPIn,
NDWPOut, NDPT, NDA, NCA

Modifiability (M) Modifiability
Time (MT)

MT: NWP, NDWPIn, NDWPOut,
NDPT

5th (replica
of the 4th)

R1 Students 26 10 Understandability (U) Understandability
time (UT)

UT: NWP, NDWPIn, NDWPOut,
NDPT

Modifiability (M) Modifiability
time (MT)

MT: NA, NWP, NDWPIn,
NDWPOut, NDPT, NDA

R2 Students 38 10 Understandability (U) Understandability
Time (UT)

UT: NA, NWP, NDWPIn,
NDWPOut, NDPT, NDA, NCA

Modifiability (M) Modifiability
time (MT)

MT: NWP, NDWPIn, NDWPOut,
NDPT

F. Garcı́a et al. / Journal of Systems Architecture 52 (2006) 627–639 637
defined and validated. These measures can be very
useful to select the models with the most easiness
of maintenance among various alternatives in com-
panies: changing their SPMs helps improve their
software processes. It facilitates the software pro-
cesses evolution by assessing the process improve-
ment at conceptual level.

The application of the FMESP framework pro-
vides companies with a suitable support in order
to fulfil the requirements of higher maturity levels
in their processes, namely

• Process definition support, by means of which the
company has institutionalized their software pro-
cesses and can manage their improvement and
consequent evolution. It provides the means nec-
essary to satisfy the general goal of a CMMI level
3: ‘‘Institutionalize a defined process’’.

• Process measurement support. The FMESP
framework includes a systematic approach to
measure all the necessary relevant artefacts
related with software processes in a consistent
and integrated way. It supports the measurement
of projects, products and processes by providing
a suitable measurement metamodel and a flexible
method to measure these kinds of artefacts at
metamodel scope. Therefore, it provides compa-
nies with the initial support necessary to go
advance in the management of the measurement
process and it could enable them to satisfy the
CMMI measurement-related key process areas
(levels 3–5) [14].

Some important ideas and improvements to
tackle in future works have been detected according
to the following categories:

• Measurement metamodel. It would be convenient
to develop a graphic notation for the representa-
tion of measurement models according to the
measurement metamodel proposed. As a result,
a software tool which extends the functionality
of GenMETRIC should be incorporated to the
SEE of FMESP.



638 F. Garcı́a et al. / Journal of Systems Architecture 52 (2006) 627–639
• SEE. The tools developed must be refined in
order to develop a robust set of tools which can
be used in an industrial environment.

• Improvement based on knowledge management.
One important future line identified is the knowl-
edge management application to promote the
software process improvement. The FMESP
framework is suitable for this application because
it provides an open repository in which the meta-
data related with the definition and measurement
of software processes are included. This informa-
tion can be used by a system of intelligent agents
in order to derive improvement actions. We are
building a prototype in this sense [22].

• SPM measures:

– Carry out new families of experiments focused
on the evaluation of concrete measures we
consider relevant (NPR, NCA) and that
according the results obtained in the empirical
study does not seem to be clearly correlated
with the maintainability of software process
models.

– Carry out study cases using real software pro-
cess models.

– Develop new empirical studies to find out if
the SPMs complexity has influence in the pro-
ject execution results.
Acknowledgments

This research has been partially supported by the
projects: ESFINGE (Dirección General de Investi-
gación of the Ministerio de Educación y Ciencia,
TIN2006-15175-C05-05; MECENAS (Junta de
Comunidades de Castilla-La Mancha, Consejerı́a
de Educación y Ciencia, PBI06-0024); and ENIG-
MAS (Junta de Comunidades de Castilla-La Man-
cha, Consejerı́a de Educación y Ciencia, PBI-05-058).

References

[1] V. Basili, H. Rombach, The TAME project: towards
improvement-oriented software environments, IEEE Trans-
actions on Software Engineering 14 (6) (1988) 728–738.

[2] V. Basili, F. Shull, F. Lanubile, Building knowledge through
families of experiments, IEEE Transactions on Software
Engineering 25 (4) (1999) 435–437.

[3] L. Briand, J. Wüstn, H.A. Lounis, Comprehensive investiga-
tion of quality factors in object-oriented designs: an industrial
case study, Technical Report ISERN-98-29, International
Software Engineering Research Network, 1998.

[4] G. Canfora, F. Garcia, M. Piattini, F. Ruiz, C.A. Visaggio,
A family of experiments to validate metrics for software
process models, Journal Systems and Software 77 (2005)
113–129.

[5] G. Canfora, F. Garcia, M. Piattini, F. Ruiz, C.A. Visaggio,
Applying a framework for the improvement of the software
process maturity in a software company, Journal Software
Practice and Experience 36 (3) (2006) 283–304.

[6] M. Ciolkowski, F. Shull, S. Biffl, A family of experiments to
investigate the influence of context on the effect of inspection
techniques, in: Proceedings of the 6th International Confer-
ence on Empirical Assessment in Software Engineering
(EASE), Keele (UK), 2002, pp. 48–60.

[7] J. Cook, A. Wolf, Software process validation: quantitatively
measuring the correspondence of a process to a model, ACM
Transactions on Software Engineering and Methodology 8
(2) (1999) 147–176.

[8] B. Curtis, Maintaining the software process, in: Proceedings
of the International Conference on Software Maintenance
(ICSM), IEE Computer Society Press, Orlando, Florida,
1992, pp. 2–8.

[9] W.A. Florac, A.D. Carleton, Measuring the software pro-
cessStatistical Process Control for Software Process
Improvement, Addison Wesley, Boston, 1999.

[10] A. Fuggetta, Software process: a roadmap, in: Proceedings
of the 22nd International Conference on Software Engineer-
ing, Limerick, Ireland, 2000, pp. 25–34.

[11] F. Garcı́a, F. Ruiz, M. Piattini, M. Polo, Conceptual
architecture for the assessment and improvement of software
maintenance, in: Enterprise Information Systems IV, Kluwer
Academic Publishers, Hingham, 2003, pp. 219–226.

[12] F. Garcı́a, F. Ruiz, J. Cruz, M. Piattini, Integrated
measurement for the evaluation and improvement of soft-
ware processes, in: Proceedings of the 9th European Work-
shop on Software Process Technology (EWSPT’9), Lecture
Notes in Computer Science 2786 (2003) 94–111.

[13] F. Garcı́a, M.F. Bertoa, C. Calero, A. Vallecillo, F. Ruiz, M.
Piattini, M. Genero, Towards a consistent terminology for
software measurement, Information and Software Technol-
ogy 48 (8) (2006) 631–644.

[14] D. Goldenson, J. Jarzombek, T. Rout, Measurement and
analysis in capability maturity model integration models and
software process improvement, CROSSTALK The Journal
of Defense Software Engineering 6 (7) (2003) 20–24.

[15] T. Gruber, Towards principles for the design of ontologies
used for knowledge sharing, International Journal of
Human-Computer Studies 43 (5/6) (1995) 907–928.

[16] Meta Object Facility (MOF) Specification, version 1.4,
Object Management Group (OMG), 2002.

[17] L.J. Osterweil, Software process are software too, revisited,
in: Proceeding of the 19th International Conference on
Software Engineering (ICSE), ACM Press, 1997, pp. 540–
548.

[18] G. Poels, G. Dedene, Distance-based software measurement:
necessary and sufficient properties for software measures,
Information and Software Technology 42 (1) (2000) 35–46.

[19] F. Ruiz, M. Piattini, F. Garcı́a, M. Polo, An XMI-based
repository for software process metamodeling, in: Proceed-
ings of Product Focused Software Process Improvement
Conference (PROFES’2002), Lecture Notes in Computer
Science 2559 (2002) 546–558.

[20] Software Process Engineering Metamodel Specification
(SPEM); adopted specification, version 1.0, Object Manage-
ment Group, November 2002.



F. Garcı́a et al. / Journal of Systems Architecture 52 (2006) 627–639 639
[21] C. Tautz, C.G. Von Wangenheim, REFSENO: a represen-
tation formalism for software engineering ontologies, version
1.1. 015.98/E. Fraunhofer IESE, 1998.

[22] A. Vizcaino, J. Favela, M. Piattini, F. Garcı́a, Supporting
software maintenance in web repositories through a multi-
agent system, in: Proceedings of Atlantic Web Intelligence
Conference (AWIC’03), Lecture Notes in Computer Science
2663 (2003) 307–317.

[23] XML Metadata Interchange (XMI) Specification, version
1.2, Object Management Group (OMG), 2002.

Félix Garcı́a holds M.Sc. and Ph.D.
degrees in Computer Science from the
University of Castilla–La Mancha
(UCLM). He is assistant Professor at the
Department of Computer Science at
UCLM and member of Alarcos
Research Group. He is the author of
several papers and book chapters on
software processes management, from
the point of view of their modeling,
measurement and technology. His

research interests are business process management, software
processes, and software measurement.
Mario Piattini holds M.Sc. and Ph.D.
degrees in Computer Science from the
Polytechnical University of Madrid, and
an M.Sc. in Psychology from the
UNED. He is a Certified Information
System Auditor and Certified Informa-
tion Security Manager from ISACA
(Information System Audit and Control
Association). He is Full Professor at the
Department of Computer Science at the
University of Castilla–LaMancha in

Ciudad Real, Spain. He is the author of several books and papers
on databases, software engineering and information systems. He

leads the Alarcos research group specialized in information sys-
tem quality. His research interests are software quality, advanced
database design, metrics, software maintenance, information
system audit, and security.

Francisco Ruiz is Ph.D. in Computer
Science for the University of Castilla-La
Mancha (UCLM) and M.Sc. in Chem-
istry–Physics for the Complutense Uni-
versity of Madrid (Spain). He is full time
associate professor of the Department of
Computer Science at UCLM in Ciudad
Real (Spain). He has been Dean of the
Faculty of Computer Science between
1993 and 2000. Previously, he was
Computer Services Director’s in the

mentioned university (1985–1989) and he has also worked in
private companies like analyst-programmer and project manager.
He is sub-director of Alarcos research group (http://alarcos.
inf-cr.uclm.es/english/). His current research interests include
business process modeling, management and measurement, soft-
ware process technology and modeling, software maintenance,
and methodologies to software projects planning and manag-
ing. He has been member of nine program committees and
seven organizing committees. He belongs to several scientific and
professional associations: ACM, IEEE-CS, ISO JTC1/SC7,
EASST.

Gerardo Canfora is a full professor of
computer science at the Faculty of
Engineering and the Director of the
Research Centre on Software Technol-
ogy (RCOST) of the University of San-
nio in Benevento, Italy. He serves on the
program committees of a number of
international conferences. He was a
program co-chair of the 1997 Interna-
tional Workshop on Program Compre-
hension, of the 2001 International

Conference on Software Maintenance, and of the 2004 European
Conference on Software Maintenance and Reengineering; he was

the General chair of the 2003 European Conference on Software
Maintenance and Reengineering. His research interests include
software maintenance, program comprehension, reverse engi-
neering, workflow management, metrics, and experimental soft-
ware engineering. He serves on the Editorial Board of the IEEE
Transactions on Software Engineering and The Journal of Soft-
ware Maintenance and Evolution. He is a member of the IEEE
and the IEEE Computer Society.

Aaron Corrado Visaggio obtained his
Ph.D. in Software Engineering at the
University of Sannio, Italy in the 2005.
He had his degree in Electronic Engi-
neering at the Politecnico of Bari, Italy,
in 2001. He developed his master thesis
at the Fraunhofer IESE, Kaiserslautern,
Italy, in the field of Software Process
Modeling. He currently works as a
researcher at the Research Centre on
Software Technology (RCOST), Uni-

versity of Sannio, Benevento, Italy. His main research interests
are empirical software engineering, agile methods, software pro-

cess modeling and management, knowledge management applied
to software engineering.

http://alarcos.inf-cr.uclm.es/english/
http://alarcos.inf-cr.uclm.es/english/

	FMESP: Framework for the modeling and evaluation of software processes
	Introduction
	FMESP overview
	Conceptual framework
	Software engineering environment

	Measures for software process models
	Empirical validation

	Conclusions and further works
	Acknowledgments
	References


